Phase mapping of ultrashort pulses in bimodal photonic structures: a window on local group velocity dispersion.
نویسندگان
چکیده
The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measurement.
منابع مشابه
Low-group-velocity and low-dispersion slow light in photonic crystal waveguides.
Photonic crystal slab line defect waveguides with slightly small innermost holes are theoretically expected to show light transmission with low-group-velocity and low-dispersion (LVLD) characteristics owing to a linear and almost flat photonic band. In this study, the LVLD characteristics of such waveguides were experimentally confirmed by using modulation phase shift measurement and transmissi...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملUnfolding the band structure of non-crystalline photonic band gap materials
Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used ...
متن کاملReal-space observation of ultraslow light in photonic crystal waveguides.
We show the real-space observation of fast and slow pulses propagating inside a photonic crystal waveguide by time-resolved near-field scanning optical microscopy. Local phase and group velocities of modes are measured. For a specific optical frequency we observe a localized pattern associated with a flat band in the dispersion diagram. During at least 3 ps, movement of this field is hardly dis...
متن کاملUltrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase- matching gratings: pulse compression and shaping
We present a theory of ultrashort-pulse second-harmonic generation (SHG) in materials with longitudinally nonuniform quasi-phase-matching (QPM) gratings. We derive an expression for the output second-harmonic field generated in an arbitrary QPM grating from an arbitrary fundamental field, valid for arbitrary material dispersion in the undepleted-pump approximation. In the case when group-veloci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2004